
AD—Aol ? 1+2? MARYLAND UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE F/S 5/2

UNCLASSIFIED TR-8 01

AND I P MUTID S E1T (U)

I..

I

t~

I ‘H

11111 1’O r’

wil l
.1

L~~~~~~
• 1125 ~~~~~~~~~~~~~~~~~

N*T1O~~ . ~~~~Au Oc S~~~~~~~S
‘It’ ~~~~t

- .—-~~~~~~ . w — ~~~ --- -—

‘1 £FO~~.1~. 79 115 4
f~~~~~~/)

-

4 4 TR-80 1

The Structure of Sp.cittcsti ona and I.pl...ntat..ion s
of Data Abst ra otiun s~

Mark A ‘Ardis
‘ t Richard (

~. Haa1.t

c

COMPUT ER SCIENCE
TECHNICAL REPORT SERIES

D D C
~~

UNWERSITY OF MARYLAND
COLLEGE PARK, MAR YLAND

20742

•
‘~~ ‘ dli ~~‘~.,s r.I,d t r pubiti r•iss•,1

*1J%rj~ pg%1s~ ~~2J f t~~

-I
--- -—~~~~~~~~~~~~~~~~~~

1

TR—80 1 ~~79

/ \ The Structure of Sp.cifiostiow~ and Iapleeentationa
- of Data Abetr aot iona~1-

Mark A ~Ardis /
‘~ Richard (

~.iHastet

f , I~ ~~~ r~~, ,

— ‘•

Departaent of Cusputer Science
University of MaryLand I / /~ ~College Park , Maryland 2O7~2

~ *
,

•1~
/ • ,

~~T’ D C
‘

~~~ TT~Ei~ r~r~L J J
‘r ~S ~~~~~~~ ~~~~~

~j J  
.—~

‘•~ ~~L~JIi L~. L~
)

A

The w~rk reported he,~ vsp supøort~.d by a grant fr~~ the Air Pore s Offic e ofScientific Research ~~Aroefi31eTe) • Coaputer ties was provided in part by theCoeput.r Scieno, Center of the Univers ity of Maryland.

i

AI~ 1~ :~~E ~~~~~~~ ~~
W~~L~~ ~

~~. :  ~~~~~ ~~~ :~:‘ .. . .
~ ~3np~ o~ r ~. r ~~ A — lb: . St rt  ~~~~~~ 13

A. •
~‘~ hni:n1 1nfor ~ntt0n ¼~tUce r —4~~~~~~

•
~~~~~~~ 

~~~~~~~~

, 

•

— — —-- -——-—---- -- .— ------ ~~~ — - -.--



I
Ardis A H alet —— Structure of Specifications and Implementations

A data abstraction is a collec tion of sets together with a coll.ction of
funct ions. An in tuitive abstra ction is unconnec ted with formalism: the sets
and functions are supposed to be known ~~ 

intçio. Formal ideas enter wh en the
abstrac tion is Ci ) m l  ~~~~ a conve~t~ional program written to car ry out
th. operations on ac!ua at a , and (ii) speci(ted, a mathematical
characterization given to prec isely descrtoö UI sets and functions. The
intu it ive abstract ion , an tmplam.ntatioe and a specif ication share a syntax
tha t names the sets and f unctions , and gives th. function domains and ranges
(as set names ). The central quest ion for any particular examp le of syntax is
whethe r th. semantics of the three ideas correspo nd : doe s th. collection of
objects  and op,ratio ns a hunan being was thinki ng of behave in the way the
impl ementati on s data and proc edures behave? Do the mathe matical entities
behav , as imagined? The quest ions can never be answered precisely, because
the intuitive abstraction Is imprec ise. C~ the other hand , precise c omparison
of sp ecification and implementation is possible.

This pape r presents an algebraic comparison of sp ecifications with
implementations. It Is shown that these abstractions a lwa ys overlap, and have
a co on ( Latt ice ) structure that is valuable in understanding the
mod ificat ion of code or sp eci fica t io n . .Jø.sver . In deal ing with the precise
entities subject to formal analysis , iW must not lose sig ht of the Intuition
behind them. Therefore. our definiti*ts’are framed in terms of the Intuitive
abstraction a person atte mp t ed to spedify ’ or implement , and we refer the
algebraic Idea s to this standard whenever possible.

Section 1 presents the Intuit ive Ideas\of an ab straction , it.
implementati on . and specification. The Idels are essentially those of
(Hoare 72 J and (Gut ta g 7 fl• Section 2 gives , the co on formalism to be used,
the constan t word algebra. In Sections 3 an& A , this is applied to
specification and implementation. Section 5 explores the overlap between the
Ideas, and s~~Rest s tha t the prec ise connectid~ can shed liRht on the
t.prec .se one that Is really of Interest : the %j~t ui t tv e abstraction in a
person s mind.

I
____ - — - —- -~~~~~~~~~ ----.--—— .---—-- ---- - --- . - -  - — —---- - 



— - — - —
~

-
~

- -
~ —-—~ - ——--—

~~

- - -

~~~~~~~~~~

-

£rdts 4 Hamlet —— Structure of Specifications and Implementatio ns 2

1. Data Abstractions

A data abst raction is v iewed In three distinc t ways in this paper.

First , as an intuitive objec t, an abstraction is a collection of sets and

mappings among them, wi th the sets and mapping s having an intuitive ex istence

in the mind of a human be ing. (Perha ps this existenc e is God—g iven , as

tronecke r claimed of the natural numbers; perhaps it Is man’ s handiwork; from

whatever source we have It whole.) Second , an abstraction Is what a

programeing language supporting type—encapsulation deli vers. In the SD~ULA

CLA SS (Dahi et al. 70) . the CUJ cl uster (t Is kov et al. 77 3 , and the SDffl.. -O

CLA SS [Cannon A Rosenberg 751 , thes . languages prov ide the prog rameer with a

means of Implementing what he had In mind. But onc e written, cod e has an

existe nc e of its own , w hIch need bear no relat ion to the Ideas that remain In
the person s mind. And third, an abstraction may be given a formal ,

mathematical definitI on. Indeed , one branc h of mathematics is devoted to

gIv Ing formal shape to intuitive Ideas like numbers and sets. As anyone who

const ruc ts formal ism, knows, they also acqui re a life of their own, and the

correspo ndence with Intuition is a difficult one to establish .

The ideas of Implementation and specification of an abstraction can be

made formal and prec ise . As formal notions , they are independent of each

other, and both are imperfec t cirrors of an intuitive Idea. The fundamental

defin it lc n.s of this paper involve co rrectness —— the precise statement of what

it means for a formal implementatio n or s pecification to agree with intuition.

Such definitions necessarily retain a noemec henical portion, but It is

Important to know , before we pass t o analysis of the formal ide a, exactly wha t

it Is supposed to be sta nd ing in fo r.

The three ideas of abstraction share a sy ntax that names the col lectios

of sets, names the functions, and gives the set names for function domains and

ranges. The definition of this ~j gnature (Section 2) 1. unusuel in that it

Includes only the names of the sets and functions, not those object s

t hemselves. Most definitions of c ompute r sc ience —— the legendary 1 7—tupl e of

aut omata theory for example —~ inv olve sets t hemselves. Here thi s is

inappropr iate , because to give a set is to give a meaning. The signature

consists of names ; when objects are attached to tho se names , it is the

~

- - - -

~

-

~

- -- ~~~~~~---— “ - —.
~~~~~~~-.—-- -- -



~~~ - —~~-— -~~~~~~ — - - --- --——-- —- -S ,.

Ardis & Hamlet —— Structure of Specifications and Implementations 3

def init ion of the abst raction itself. If the assi gom eat to the names arises

fr~s code, we have the implemented abstraction; if it arises from some
mathematical descript ion, the specified abstraction; and behind it all. are the

sets and functions of the intuitive abstraction. Moch of the power of formal

ideas c omes from a convenient confusion of syntax with semantic substance: we

talk about the complete entit y as if it had only syntax. This confusion is
too expensive he r., because with three possible meanings, we can never

explicate the relationships among them from their common names.

It is imposs ible to be more precise about the intuitive semantics that

nig ht be assigned to a signature than to say that a human being imagines

part icular sets and particular functions defined on tho se sets to be the

signature names. Then the intuitive abstraction is complete .

The best example of an intuitive abstraction is the natural numbers. The

set Is an infinite one, conta ining a distinguished element 0 , and there is a

generating function S (Successor) that prod uc es the other elements, all
distinct: S(O), S(S(O)). ... Other less fundamental operations such as
addition and enltlpticntion can be defined. These are all so familiar that to

name then is to feel that they are known and understood, exactly the characte r

tha t Intuitive abstractions have. It Is important to separate the intuition
from any formal treatmen t (here fo r example the objects defined by the Peano

ax ioms) , sinc e th. identity of formal and intu itive objects can nev er be
proved, and we went to avoid an infinite regress by gro unding our definitions

on what a human being has in mind.

1. 1. inplementatIon

For an Implementation vs can be precise . A pro $r thg language is

involved , with a well—defined semantics. The lang uage has some built—in

entitie s, and the ab il ity to define abstractions as exten sions . The usual
situation is that there are a fi nite number of primiti ve type s , along with a

few fixed wa,, to construc t new types fro. these. The langus ge has a

proc edur e—definit ion fac ility, in which parameters and returned val uss may be

any of the built—in or const ruc ted types. A date -abstrac t ion—defining
faci l i t y a llows a record of built—in t ype s , along wi th a group of procedures,

to be enc apsulated and cal led somethi ng like a “ class. ” The record

-~~~~ —~~~~~~ -- - ~~~~~~~~ - - -—~~~~~~~~~ -- -—

Ardis & Hamlet —— Structure of Sp.oifioations and Iapl sntations

constitutes the internal , hidden representation of the abstraction to be

defined , while the procedures alone are visible from the outside , and permit
manipulation of this data , In order to give examples , we must have a
particular syntax , so we construct one in a Pascal-like fashion. For example ,

elan Prize
old , new , borrowed , blue);

Value : lax1
~~~ r~~~~d:

U: Prize): ja&.
. ..

J.~L): Prize ;

. ..
g
~
g
~ 

nias .

The only aspect of such a program fragment that is not defined by the
progrm ing language , independent of it i abstraction facility , is the
restricted visibility of the Lznnaaed record that begins the olsas , Within ‘~.he
elass this record takes the elasa name (Prize in the example ) and may be
manipulated normally. Outside the ela,. the name may only be used to type
declarations ; the outside program may not ref.r to the components. Indeed ,

th. using program is not to have any idea of what constitutes the internal
record . Objects of the defined type can only be manipulated by passi ng them
as parameters to the procedures within the ~~~~~ (It is possible to use the
defined type without declaring any objects. For the example above , it might
make sense to evaluate Val(Bu lld(3)i , Buil d (—3)) in which the hidden data
storage has onl y a fleeting existence. )

In most of the exist ing data—abstraction programming languages the
internal record (here unnamed) retains values from call to call of the
procedures encapsulated with it. That is , a persisent internal state of the
elm exists , and each declared object of the new t ype receives a unique
version of this stat.. The actua l situat ion can be captured formally by
treating the Internal record as an additional phantom parameter and result ,
for each procedur e. For simplicity we instead define ow’ Pascal—like language
so that its elm records are local: on each procedure invocation the record
comes into existence , and must be initialised to be used sensibly; no values



-~~~~~~~ - - ~~~~— ~~~~~~~~~~~~~~~ ~~~~~~~ -— 1

Ardis & Hamlet —— Structure of Specifications and Implementations 5

are retained from os,ll to call.

The meaning of a new data abstraction is v.11—defined by the
programming—language semantics: the appropriate records and other built.in

quantities are manipulated by the procedures just as if the eLsas boundaries
were not present. It remains only to give the obvious correspondence with the
syntax of the signature of an abstraction : th. record within a nias. goes with
one set name of the signature , and the procedures go with the signature ’s
(unction names , with the domains and ranges matched up as declared. The
built—in types also match with set and function names of the signature. Once
a class has been defined in this way , the new type (defined by the eL... name
and corresponding to the unnamed internal record ) may be employed in defining
other classes just as the built—in types can. The most natural way to

construct a complex definition is as a strictly nested hierarchy , beginning
with  a class tha t uses onl y built—in types; however , there is no reason to
forbid mutual interactions except those that are not well detinec. Situations
tn which nothing is really defined can be detec ted in syntax just as
nonsensical recursive types are detected (van Wijngaard.n et al. 76].

To discuss precisely the meaning of a class the programming-language

semantics must take a precise form , and we select that devised by Harlan Mills

(Linger , Mills & W i tt 79]. Each built—in primitive type corresponds to a set
of intuitive objects ; for example , ~~ to the integers , enunerated types to
fi nite sets , et c. Recor d types correspond to cross prod ucts of the sets of
the ir components. Procedures correspond to mappings among the sets to whi ch

their parameters and result values correspond. Thus for example , in the elm

Prize above the objects are integer s Z , a certain four—element set W for
the enumerated type , and for the special record , pairs from 1 x W • The
functional objects are

(V al] : Cl x W ) x (2 x W ) —— > 1
(Build): Z ——) 2 x W

The fel icitous not at ion of surroucd log the procedure syntax name by brackets
‘-o indicate the meaning function was invented by Kleene (Eleene 52] . The moat

Interesting and diff icult pert of th. semanti c definition of the progr ing
language is here omitted, in whi ch it is spelled out which part icular
functions (Yal] and (Build ] happen to be. Th. particular ones are



I 
- 

_ .. _ _ -- _

~~~~~ ~~

.- —

~~~ 

_

~~~~~~~~~~~~~

.

~~~~~~~~~~~

_ -

~~~

--

£rdts & Hamlet —— Structure of Specifications and Implementations 6

deter mined by the meaning of the (elided) bodies of the procedures. Roughly ,

the proper funct ion is that one that agrees with the collection of
input —output values arisi ng from the procedure execut ion , To fill in the

details of the definition requires consideration of how each computational

feature of the language works. A definition along these l ines for a simple

language is given in complete deta il in (Hamlet 78] .

A c lass of the programming language can now be made to provide a

semantics for a signature , by matching up its types w ith the set names , and

tts procedures with the function names. It this can be done consistently , the

class can be said to Imniamant the s ignature , and give it a meaning, the

imp lemented abs tr action . A ny given signature can be implemented in many ways ,

because procedure bodies in the aode are not constrained by the necessary

corre spondence. Simi larly, any ela as implements some signature , namely the

one in which the names are s imply taken fro. its types and procedures. For

example , the class Prize above implements a signature with two set names 3

and t and two function names t and g , such that t: $ x s ———) t and

g: t ———) $

The carr.ctn.as of an implementation must be relative to an independent ,

intuitive idea. If we have an intuitive abstraction in mind , then an

implementation abstraction with the same signature is correc t if the meaning

of the programming-language entities aisles that of the intuitive ones
exactly. That is , each function computed by the progra, lust agree with the

corresponding intuitive function. Unfortunately , this agreement can be

attained only through an additional intermediary , because th. function the

program computes , and the intuitive functions , have different d~~~ths and

ranges. In an intuitve abstraction with the signature of the above example ,

let S be the set which La implemented in the class record , and let 2 be

the integers (which ~ implements). Suppose that the function g: 2 •—-) S

is the one we have in mind corresponding to the procedure Build. (These

symbols stand for actual sets and functions now , not for the content—free

names of the signature.) Correctness must then m.an that (Build) - — the

function computed by the procedure -— agrees with $ • But (Build] does not

have S as its range; rather it has a cross product set that is the eaning

or the class record . What is .isaing is a correspondence between elements of

the class record and elements of the intuitive set S • We know thst these

a

_ _ _ _ _ _ _ _ _ _ _
_ -._

~ ~~~~ -_ _,

Ardis A Hamlet —— Structure of Specifications and Implementations 7

sets correspond by name , but without an exact description of which element
corresponds to which , it is impossible to state the condition that (Build)
and g agree. In the example , the range of (Build) is Z x W , s o the
missing intermediary is a mapping that assoc iates an element of this set with
an element of S • Let this mapping be H: 2 x W ——.-) S (for Hepresen tatio n

-— the programming—langu age pair represents the abstract obje ct) . Correctness
th en means that (Build] and $ agree as best they can: that given any

z ~ 2 , the intuitive function and the implementation produce results that
agree. In symbols for this case ,

• R((BuildJ(z ’J) .

A mor, graphic way to present the same statement is in an i~~l.mmntstion
diasram for Build:

z _—.-_5____ > s

(Build)
Z ——— ———) Z x W

If the ftagram co utes , this part of the implementation iS correct.

When the formal definit~on of correct implementation is presented in
Section ~~, we will see that the representation must be taken to be technically
more compltoated , in order to captur e the idea of implementing one abstraction
in terms of another. In the example , the si mplification is that we have taken

2 (the integ ers) to be the same set as a programmi ng—languag e meaning , and

an intuitive abstraction , Where this simple correspondence tails , a cross

product of representat ion functions is required to construct the
implementat ion diagram. Behind the technical details lies the important idea

P~a~ in building a hierarchy of abstraction s , lower level s may be imperfectly
understood. Formally , this imperfect understandi ng enters through selecti ng a
peculiar representation to map the lower-leve l abstractions within the
higher—level implementat ion diagram.

As the idea of ‘eorrectness ii framed above , it describes a relationship
among three independent ideas: an intuitive abstraction , a program , and the
representation that links their sets. In practice , the intuitive abstraction
is the starting point , and with some representation in mind , a program is

d —


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Ardis & Hamlet -— Structure of Specifications and Implementations 8

writte n. What should not escape notice is that when the three ideas do not
match to yield technical correctness , the fault may lie with the code , but it
may also ( independently ) lie with the representation. For a fixed
representation there may be any number of correct implementat ions ( including
zero) ; for fixed code there may be any number of correct representations
(ditto ). In Section A we will see that in the practical case where the code
is fixed , a collection of interrelated correct implementations results as the
representation varies. Because this collection has a simple , t ight structure,
we propose it as ~ good way to think about groups of abstractions.

1.2. Specificat ion

By speoifications’ for a data abstraction , ye mean a mathematical
formalism that describes the sets and functions named in a s ignature. In

mathemat ics itself , the discipline of toundations’ is concerned with giving
formal meaning to intuitive objects. Set theory and number theory have been
most extensively treated , using the tools of mathematical logic. Abstract

algebra is also a fou ndational technique , but it permits use of def in itio nal
phrases such as the unique object sueh that . • which cannot always be
justified by a construction. For the specifications to be used here , we

combine the algebraic approach with logical ideas to give the relationship

with intuitive abstractions.

Just as there are many programming languages that allow the
implementation of data—abstraction extensions to their types , so there are
sany candidates for an algebraic specification formalism. These all have

their basis in formal theories. These theories have a syntax of wefl—form.d
fQr .uias (

~~L~s~ that are constructed from liven collections of symbols. W fs
are a syntactic idea , in that no meaning is attached to a particular formula ,
but there are precise rules for a fo rmula ’ s construction .

Prom the many choices available , we select a particular formalism,
essentially that of (Guttag 77) , but without conditional axioms . The symbols

be used are:

( 1 )  Several collections of distinc t variables , each unlimited.
!ach col lection will be used with a set name from a s ignature (its

~~~~~~~ to construc t a fi nite set of finite wfs. Thus in any

a __________________

- — — -~~~-~~~ -- - — — — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~

V ~~
—

~~
-— —.—

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ — __________ _____

Ard is & Hamlet —— Structure of Specifications and Implementation s 9

particular case a finite number of variable collections, each
containing a finite number of variables , suffices.

(2) £ collection of function symbols , whoa. number is similarly
unlimited/limited.

(3) A collection of special 2—ary equality—function names , each
having distinct domain D x 0 for some set name D , and a common
range (named Boolean), written (infix) *0

(Z ~ Parentheses and co~~~s.

From these symbols the usual t.rms’ can be constructed. Each term has a

‘type that corresponds to a set name. A variable is a term , of the type
associated with its collect ion, A function name is a term , of the type of Its
rang e , provided that it is followed by a list of parameters that are tires of

the appropriat, types to match its domain , enclosed in parentheses and

separated by ~omaas.

Certain terms are distinguished as axioas. These are of type Boolean ,

having one of the special equality- function names as the outer most sy mbol .
All variables appearing in an axiom are universally quantified by default.

The way tn which we use ~he formalism , and ‘he general method of giving
Vs corres pondenc e with intuition , do nut depend on these details , but some of
the properties of the formalism would change if they were changed. In any
case , a specific form is needed for examples.

For example , the following are axioms ,

~~
aU u

‘ ~ ‘7 t
, u) s~ r(f(t , v) , v)

~f for two set names 7 and U (along with Bool.an B) , t is a variable
of type I , and u , v are of type U ; and , there ar. two function names
f: I x U —.-—) I , and g: —— —) U ; with special equality functions

$7 : T x I — — > B and .
~ : U x U ——) B • In the second axiom f(t , g) is

a term of type I , because f is a function name with this rang. , t is a
v ariable of type I ; and g is a term of type U , because tha t is its

range , and it has no parameters.


~~~~~~~~~~~~~~~~~~~ -
~—~~

‘-“ -.—. ..—- ‘ “~~~~~~
‘ ‘

~~~
‘ . -- —

Ardis & Hamlet -— Struc ture of Speoifioat tons and Implementations 10

The correspondence betw.en a signature , with its set and function names ,
and a set of axioms , is obvious. Should it happen that there is a consistent
correspondenc e between the appropriate names , we say tha t the set of axioms is
a s~~~ifinaUon for the signature , This notion is the analogue of
‘implementation’ of a s ignature without refere nce to any intuitive meaning ;
and as in the former case , since the substance of the axioms is not
constrained , many axiom set s specify any s ignature , and any axiom set
specifies sue. signature.

The meaning of a set of axio ms , which defines a specified abstraction
analogous to the implemented abstraction that a programming language defines ,
.. s not so well known in computer science. This meaning is supplied by the
concept of a ‘model’ from mathematical logic. By identifying the strictly
formal names ~.n axioms with particular set elements and functions , and in
par tcular identtfy lng ‘Boolean’ wt th the set ~~~~~ false) and the speci al
equall y functions with actual equality relations , we can talk about the idea
of ‘truth.’

~EFl.MITI~~ —— An int.rnretation of a set of axiom s ~s a mapping that
ass igns an actual set to each type , and actual functions over
appropriate cross products of these sets to the function names. In

particular , Boolean must be assig ned (~~~~~j, faJasJ , and each “z’

must be assigned that function which takes the value ~~~ if and
only ~f the equality relation for the appropriate set holds. An
ax~oe ~.s ~~~ ~~ ~~

intsrnretatinn if and only ~f no matter which
set elements under the interpretation are taken for its variable
symbols , th. functions of the interpretation , applied to these
•i~~~flt3 , do yield

~~~~ for the outer 
‘i’ function. The sets and

func ions of an tnterpretation that makes every axiom in a
specification true , is called a modal of that specification.

We take this ides as th, semantics for specifications: the specified
abstrac ion is any model of the axioms .

For a particular signature , we can now consider another pair of meanings

‘us as we did f~r implementation , A set of axioms that define a specified

abstraction can be said to be carre~t relative to another , intuitive

abstraction for the signature , it the intuitive abstractIon agrees with those  

s —.— .



Ardis & Hamlet —. Structure of Specifications and Implementations 11

axioms. The technical f or .  of this statement is just that the int uitive
abstraction is one of the models for the axioms. That is , ther e must exist an -

interpretat ion mapping that carries the axiom formalism onto the intutive sets
and functions , such that the axioms are true in that interpretation.

An interpretation is as essent ial to correctness of a specification as a
representation is to implementation. (Indeed , (Hoare 72) uses the word f rom
logic for the latter idea.) As before , it can happen that axioms fail to
correctly specify a given Intuitive abstraction , not because of an error in

•h. axioms , but b cause the correspondence of the interpretation is in error .
However , there Is les leeway for cOmmitting interpretation blunders in
specifications , becaus e the interpretation domain has no named structure. A
representation mapping carries a complex record object to an intuitive one ,

and the sap is likely to depend on the record structure details; the
Interpretation maps only homogeneous sets.

.3. ImplementatIon vs. Specification

~ata abstractions are implemented or specified by people beginning with
an intuitive Idea of the object s and operations desired. The definitions of

orrectness above relate the resulting formal objects to what a person had in

mind. But in practice , only the formal objects exist for analysis. We ra ise
tne question of the extent to which they overlap:

Suppos. that a certain cli.as implements a n*aber of intuitive

abstractions correctly , and a certain set of axioms correctly

speciftes a nomber of intutt ive abstractions. If they share the
same signature , what is the relat ionship between the classe s of
intui tive abstractions they correctly capture?

This question implicitly raises the deeper question of the structure of the
correct intuitive abstract ions for a given implementation or specification,

Because the details of the formalisms for implementation and
specification are so different , we cannot compare thee without a common
theoretical framework. The remainder of this paper is devoted to analysis of
such a framework , a word algebra of constants,

~~~~~~~~


-

Ardta & Hamlet -- Structure of Specifications and Implementations 12

2. Word Algebra

The syn tax cosmos to an intuitive abstrac t ion , an implemented
abstraction, and a specified abs traction is captured in th. collection of set

and fuection names called a signature.

DEFINITI ON — A stsnature is a pair CS , F) consisting of a finite ,
none.pt y collection of set names S (the set s an, called sorts)
togethe r with a f inite , noneepty collection of fuection names P
the f uect io n domains being cro ss products of sorts , and the ranges
sorts. The tupi. of types of the parameters of a f~m~ction is called
i ts ari~y. Function names are considered to inc lud e ar ity
informat ion. The notation “ f : D —) I” indicates tha t D is the
domain of f and R i ts range. bfl~en th e ar i ty is important . 0
will be written out as a cross produc t to show it. One sort is the
distingui shed sort—of—interest.

In talking about a signature . It Is Importan t to remember tha t only names
are Involved . For example , th. signature gives not the sorts , but only the
sort n .s. The Jiatinguished name of the sor t—of—interest is intuitively the
nam. of the abstraction i t se l f ; the objects of this sort are the on.s to be
defined by the abstract ion tha t uses the names from the signature. Fig. 2. 1
:onta ins th. sig nature for the L ist data abs traction , an exam ple we will use
In later sections.

_________________________ _________________

I

U ___________

—- -S— ——-— -- - -- —- - ---- -- — , - -~~ -- - - ---.--

- —.~--- - — -~~—-~.. -;--

Ardis & Hamlet -— Struoture of Specifications and ImplementatIons 13

WITS

Li st
Lit

rti.c~rio~s
EmptyL: —> List
Conc : List a List —— List
bad: List — — > Lit
Tail : List —> List)
~ ks1isi : Eli — — > LietOne: —) F~l~

I
~

Figure 2. 1 The signature of the List data abstraction

_ — - - -.- ~~~~~~~~~ — -~~ ~~~~ - ~ - ~~ - ---. - - — - - -- _— —-- - fl - -

Ardia & Hamlet -— Structure of Specifications and Implementations 1~

Given a signature of a data abstraction there exists an algebrai c

structure of possi ble meanings of tha t signatur e , a lattice of semantic
Interpretations derived so lely f roe the signature.

DEFINIT ION — The cOnstøflt
~~~9li ~~~~~~g Wc of a signature (S, F)

Is the set of all constants formed as follons:

U) Each 0—ary fuection f: —) S 1 in F is a constant word of

type S 1

( 2 )  if 1: S 1x . . .xS 5_ 1 —) S~ is a fts~ction in F and

are constant words of types S1, ... , • t hen
is a constant wo rd of ty pe S~

(3) Nothing else is a constan t wo rd.

For example , given the signature of Fig. 2. 1, the foll~~ing are constant

wo rd a:

E.ptvL
MaUl 1st (One)

Conc (~~kelLst (One) ,Msk.list (One))

An iLi ~~u 
Is a pair (S , F) • where S is a collection of sets , and F

Is a collection of mapping s between the sets. The sets of are named by
the sort s of the s ignature and the mapping s are named by the ftmction names of
the signature. The reason for defining 

~ 
Is to have a name for eac h value

of eac h sort. ISo matter which view of data abst ractions is taken (intuition .
specification or implementation), one has to hav e a way of describ ing the
elements of sorts. W~ prov id es a name for every element tha t is the result
of same sequenc e of operations. If one s intuitive v iew of a data abstraction
includes elements of so rt s that cannot be generated by sequences of
operations , then W~ cannot d escribe those elements. However, progr ing
languages tha t sup port t ype encapsulation do not s lim implementation . of suc h
data abstractions , (Int t lalt aat io n of variables is an operation in our view.)

2. 1. Equality in 1k

Two different sequences of operations may be intended to produce the same

value, the same element of a sort. The two corresponding elements of W~
I

• -

- - -  _ _ _ _  _ _

~~~~~

•

~~~~~~~~~~~~~ 

—~~~~~~



_ _ _ _ _ _

Ardis & Hamlet —— Structur. of Specifications and Implementations 15

sho uld be equal. We cal l suc h intentions ~~~~~~~ tote r~retat iona . In order 
-

to define this idea precisel y we need some mathematical terethology.

DEFINITION — Am ~~~~~ relat ion - over a set I is a binary
relation satisfying the following properties, for all, a, y, & in

I:

(1) a a • (Reflexive )

(2 )  If a y then y — a • (Sy et rtc)

(3) If x y  and y z  then x * .  (Transitive )

A c oniruence relation on an algebra CS , F) is a set (
~~~) of

equival ence relations , one relat ion defined on eac h set Si 6 S

with the substitut ion property:

(r n) For all fuections f : S 1*•~ •XS n 1 —~ S5
a t ~~

y1 • where i • l,..., n—l , implies
f (x 1,. .. ,x~~ 1)

~
f (y1, ...,y~ _ 1)

Mow tha t we have the terminology, we say precisely what we mean by a

semantic Interpretation.

DEFINITION — A
~~~~~~~~ 

interaretat ion of a signat ure is a

congruence relation on its constant word algebra W~ • We say tha t

two values of W~ are enual in a semantic in te rpretatio n whenever
they are related by that c ongruence relation.

We have deliberatel y chosen an algebraic definitio n for “semantic

Interpretation .” b cause we wish to d escribe intuitive data abstraction s tha t
have been correctly sp ecified by algebraic axio ms. Perhaps it is a surprise

that th is definition applies equally well  to imp lementation s , as we will show

in section 4.

Each semantic interpretation, because it is a congruenc e relation,

def ines a ueique algebra , called a cuo tie nt j~gg)jg. One such quotient
al gebra behaves just like any intuitive data abstraction for a signature.
That is . it has the r ight nueber of elements in each sort , and each feection
prod uc es the rig ht val ue for each set of input values. We will abuse the

termino log y sl ightly, and refer to a congruence relat ion as a surromate for a

U 

—

~~~~~~ 
— —

_ _ _ _ _ _ - — - -,— •~~~-.—~~~~
_.- -

~~~
•_ ,

~~~
- — --_ -_ --—--_--•--—~

•- --
~

-
~
---•- __ —_-—-- ._ ,—

Ardis & Hamlet -— Structure of Specifications and Implementations 16

data abst rac t ion that one sight have in mind. It would be more prec ise to say
that the quotient algebra def ined by the congruenc. relatio n is the sur rogate .
R~ere t here is no chance of confuiion we will even drop the “ sur rogat. for ”
terminology and use the term “semantic interpretation ” when we mean an
intuitive data abstractio n . We s~~~~rize these c onv entio ns as follows :

ASSUMPTION — Every intuiciv• data abstrac t ion with signatur e S
can be modelled by a quotient algebra that is defined by a
congruenc e relation on the constan t wo rd algebra Wc of S • Tha t
is. every intuitive data abstraction has a sur rogate.

2. 2. Structure of semantic Interpretations

Each c ongruence relation on W~ may be thought of as the set of all
pairs of constants tha t are equal in that relation. We thus order congruence
relations by set containment: a congruence relation is conesi 4d in another
congruence relation if and only if It Is a subse t of the other. A semantic
interpret ation is contained in another semantic interpretation if all the
constants tha t are equa l in th. fi rst are equal in the second. To captur e
thi s order ing relationship pr ec isely vs need more ter mi4oiogy.

DEFINITION — A pa~ tjp ~~y
~~~~~~~ !±~~. 

(A, C) is a set A with a
relat ion satisfying the following prop erties, for  all

a , b , c 6 A

(1) a C a . (Reflexive)

( 2 )  a b and b < a implies a • b . (Amtisy etrtc )

(3) a b and b c Implies a C c . (Transitive)

A lattice is a partially orde red set In which every two elements
have a least upper boued, called the ~~ and a greatest lower
bound, called the ~~~~ A coeml et e lattice I. is a lattice in
which every subset of 1. has a join and meet. A
sub latt1ç~ is a subse t 1. of a lattice N closed xtder the Join

• and meet op eratio ns defined on N , operating on subsets of 1.

The main result of this section is the following theorem.



—- ,.-- - • • •— — ---—- ——-.--—• —-— .
~- - - .—.-——— —~—•-—-•-——~~ -—---- - —~~~- ------—-- --- -- — - - - - --—.-—.,--- •- — .— --- —• -

Ardis & Hamlet —— Structur. of Specifications and Implementations 17

THROREW — The collection of semant ic interp retations of a s ignature
forms a complete lattice , denoted L,,

PROOF -- By definition the collection of semantic interpretations of
a signature is the collection of congruence relations on the word
algebra W0 . The collection of congruence relations on an algebra
ordered by set oontainment is known to be a complete latti ce
(Birichoft & Lipson 70], with meet and j oin operations set
inter section and congruence closure union. The top element of this
lattice is the trivial algebra , containing one element in each sort .

2.3. Exemple

As illust ration , a part of the lattice of semantic interpretations of the
List s ignature is shown in Pig. 2 2 .  Even for such a small example , L.4
like W~ , Is Infinite In size . Howevur , the port ion shown s enough for our
purposes, Later examples will not need any of the missing pieces. What is
Shown Is a complete sublatt ice of Ld . Only four constant s from W 0 and
their relat ionships are shown.

_ _ _ __ _ _ _ __ _ _ __ _ _ _ _ _  ---
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


• Ardis & Hamlet -— Structure of Specifications and Implementations 18

[(A .B .C .D)

F (A) 1 F~(8) [(A .C) (A .B) (A ,D) (C) 1 D

~~

(B ,C, D)1 1(A P C , D)
[
~~.D)

J
(C, D) (B ,C) (A ~~ B D)] (A , B ,C)

T (A)
(B)
(C)
(0)

A • Empty t.
B • Makei is t One)
C • Conc~ Makeiist (One),Makeiist(OnS))
O • Conc (Conc (Makeiist (One),Make aist (One)).Makeiist (Ofle))

F i g u r e 2 .2 A port ion of the lattice L~ for List

I

-- - - -~~~~~~ -~~~~~~~ ~~~~~~~~~~~~~ -•-~~- - • -~~~~~ - —- -- —— — • • - -- -~~~~~~~~~~~~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -

Ar dis & Haslet -— Structure of Specifications and Implementations 19

Each box in Pig. 2.2 represents a semantic interpretation . All equa l
constants under that tnterpre tat to s are enclosed in parentheses. Note that
single letters are used as abbre v iations . For examp le, “ (A ,B) ” means that the
constants “~~ptyL” and “Ma k. list (On.)” are equal. Each arc in the lattic . is
a conta inment relationship: the semantic interpretation of the hig her box
contains the semantic interpretation of the l~~~r box . (Since there is only
one element in sort Elt , only th. values of type List are shown in this and
later lattice d tagr s.)

To see what the complete lattice L~ looks like , imagine an infinite
nusber of levels of boxes, each Level consisting of an infinite nuaber of
boxes. Each box on eac h Level (except at the very top and bottom) is
connected to some, but not all, of the boxes on the nex t higher level and the
next lower level. At the very bot tom is one box connected to all of the boxes
on the Level immed iately above it ~uat as the top box is connected to all

ozes on the level immed iately below it.

_
— -- ..-~~~ ~~

-—— - - - -

Ardt s & Hamlet -— Structure of Specifi cations and Implementations 20

3. Specification

The formal theory described in Section 1.2 permit. us to write
collections of axioms using arbitrary variable symbols , function symbols, and
special “equality” function symbols. in def ining the notion of the “type” of

each term . a collection of set names is Involved, associated vith e&h
collection of variables , and with function domains and rang.. . The syntax of

th~ wfs of this formal theory can be made to match the syntax of a signatur e,
setting the stage for giving a signature the meaning of a specified

abstraction.

DEFINITION —— A signature (S. F) Is specified by a set of ax ioms,
if and only if each type involved in the axIoms corresponds to a
member of S in a consistent way (the consistency enters when

function domains and range. are considered), and each function
symbol in the axioms corresponds to a membe r of P

A signature canno t be specified unless it thus contains a sort name for the

~oolsan required in the axiom formal ism. and all the nec essary equality

functions for Its sort names. (Since the types of the equated terms make

c lear which equality is Involved to any axiom , we henc .forth drop th. type
sub script , and write simply infix “•“). With these mthima.l restrictions , any

signature has many specification . , and each set of axioms has a “ natural ”
signature that it sp ecifies , in which the sort and function names are taken
from its types and (unction symbols.

For examp le , Fig. 3. 1 conta ins a specification whose natural signature

has two sort names and five function names as indicated.

-

-~ ---——— •-—--~ -~ —~ —•-- - •— -- -- -- - -- - ~~ • - - --— - -~~-- —•-

Ardis £ Hamlet —— Structure of Sp.citlostion. and Implementations 21

SOITS

List
Lit

I-

FIISCTIONS
LaptyL: —, List
Coec : List z List —— List
Head : List —> Lit
Tail: List —) List

~~kelIst : Lit — List
One: —) Lit

AXIOPIS
Head EaptyL) • One
Head)~ kalIst (I)) • I
Head Conc U~ kalist (I), Ma kslist (U)) • I
Tail (EmptyL) • LaptvL
Tail (P~ ke I ist (~)) • EmptyL
Tail (Conc O~ kelist (I) , Hakel ist (Y))) • Hakelist (Y)

Makel ist (Erro ril) • EmptyL

Conc EmptyL , 1.) • L
Cone Mskel ist (I), FaptyL) — Makelist (I)
Co ne Hakel ist (I), Co ne (Pbkelist Y , Mskelist (Z))) —

Conc (Hakslist I Makelist (U)
Conc (Conc (Mak.l ist (I) , Mskelist T 3, 1.)

Conc (Hakelist (I), Mskalist ‘V

Figur e 3.1 Specification of List data abstraction

I’

-— - - ‘ 4— -

C

-

~

• - - - -~~~~~~~~~~~~-____ — - - —-

lw . — ——— - - --— -
~~~~

--— -- . - - - — — - —-. -—-~~~- - -

Ard is & Hamlet -- Struct ure of Specifications and Implementations 22

3. 1. Correctne ss

As described in Section 1.2. we take th. meaning of a specification to be

any mod.! of the ax ioms, making It possibl. to define agreement with

intuition:

DEFINITION — Given an Intuitive data abstraction A and a set of
ax ioms tha t specify the same signature , we say that the axioms

correctly specif_y A if and only if A is a model for them. That
is , If and only if there exists an interpretation of the axiom

formalism into A that makes them all true.

Secaus e an intuitive abstrac tion and a sp ecified abstraction are required to

share a signature , the only way that th. former can fail to be a model Is by

the assigement cho sen for the function symbols: If the intui t ive functions do

not in fac t satisfy the axioms , th, sp ecification is Incorrect.

A sp ecification contains semantic information in th. form of ax ioms. The

axiom. . may be viewed mu a list of requirement. tha t mus t be sat isf ied by any

s emantic interpretation of the si gnature. it Is our view that these

requi rements are min imal , but 
~~~ 

max imal conditions . A s pecificat ion does

not define a uniqu, semantic Interpretation , but a collection of semantic
interpretations.

3. 2. Semantic interpretation

In order to describe what a specification means , we need to characterize

all the semantic interpretations tha t agree with the specification . Some
interpretations must be ruled out , because they do not equate constants tha t

the specifications asserts are equal. The minimal set of equal constants tha t
must be in a semantic interpretation that ageees with a specification are in

the rel at ion speceq .

DEFINITION —— A derivation from a specification S is a finite
seque nc e of e~uatioas formed as fo llom s :

(1) v • v , where w is any constant of
~~

is an

equation.

-

~

- . ~~~~~~

r’n ‘ — — -‘

~~~~~

—

~~~~~~~~~~ 

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Ard is & Hamlet -— Structure of Sp oifioations and Xmplesentation. 23

( 2 )  if  v 1 • is an equation then w 2 • w 1 is an

equation.

(3) If w 1 • w 2 and v 2 • w 3 are equations, than

• w 3 is an equation.

(4)  An equation is formed fro. an axiom of S by an

aastgement of constants to var iables, where each

occurrence of a var iable x of type S in A is
consistentl y replaced by a c onstant w of type S

(5 )  if w 1 • w~ and f(...,c ,...) • f(...,c ,...) are

equations, and c Is of the same type as w 1 and w 2
then f(...,v 1,...).f(...,v2,...) is an equ.ation.

(6) Nothing else is an equation.

The last equation in a derivation Is the equation derived. Two

elements w1 and w, of the constan t word algeb ra W~ of a
specification S are in soeceg if and only if the equation

- v ,  can be der ived f r om S . We ~ay tha t v 1 and w2

are .iuaI In speceq

Our intuitive view 3f  spect f ic~ tioa of a data abstracti on is: two value s

f a sort are equa l because they are identical , because an axiom asserts they

are equal, or because they were cre*ced by substitution of equal values for

the same part of equal values. The rules for forming equations In a

derivation capture Just those equalities: rule U) for identical use , rule

( .)  for ax ioms and rules (2 ) .  (3) and (5) for substitut ion..

LE?~V.. —— Speceq 15 a cong ruenc, relation on

PROOF — Rules (1) . (2 )  and (3) for forming equations in a
der ivation are J us t restat..ents of the refl exi ve , symmetric and —

transitive properties of an equivalence relation. Thus speceq ii

an equivalence relation. To show tha t it is a congruence relat ion

we must demonstrate that the substitut ion prop erty ho lds. Suppose

constants v 1 and w 2 of typ e S~ are equa l In speceq • Then

there exists a der ivation of v 1 • . Let
f: S 1x. . .xS ix .  . . Sn_I ~~~~ Sn be a function. The constant wo rd 

-~~~~~~~~—- - -~~~~~-~~~ —- -  --~~~~~- - ---- - -



r” 
_________ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.- -- — - ,

Ardi3 & Hamlet -— Structure of Specifications and Implementations 2~

algeb ra U~ conta in s all values of f , and all the elements of

are constants. So , there ex ist constants c 1,... ,c~_ 1 of
types S1,•••,Sn_ I and a constant

Continuing from the derivation of • w 2 • by rule (1) we derive
the equation

Final ly , we der ive

by rule (5).

So, speceq is a semantic interpretation. Next , we show that it is correctly

spe c if ted.

LZPQ4A — Given a specification S • its semantic interpretation

speceq is a nodel for S

PROOF — This is one plac e where we cannot afford the confusion tha t
mig ht arts, from treating a congruence relation , speceq , like an

algebra. Let us cal l the quotient algebra def ined by speceq

specali • The sets of specalg are sets of equivalence classes of

elements of W~ . That is, all elements Of Wc that are equal in
speceq are in on. equivalence class in specaig • The mappings of

specaig are functions defined by relations In upeceq : Let

f : S 1x...xS~_1 — S~ be a function in the signature of S • Let

S~ • (w1~) for I • ,...,n . Th. set of all pairs

(f(w i,
.....v~_ i~

) ~~~ In speceq defines a function f ir

specaig

We now show tha t specaig is a model of S • Let w1 • w2 be

any instance of any axiom of S formed by consistently replac ing

all variables by constants of W • 3y rul e (4) for forming

equations, w 1 • V
2 can be derived. That means tha t the function.

~~f specaig whose names appear In V
1 and v, operate in such a

way tha t “v1 — vi ” has tha value “true” in the 8oolean sort of
sp eca lg . So, specalg is a model of S

1

- - -~~-- .- - — - - ~~ . - - -rn
.

— - - --~~~

— -
~~~~~~

-—— - -

Ardia & Hamlet -- Structure of Specifications and implementati ons 25

3.3. Structure of Semantic interpretations

The congruence relation speceq is Just one semantic interpretation of a

signature. There may be others that agre. with a specification.

DEFINITION —— A congruence r.lation is said to sat isf y a
specification if and only if It contains (in the set—theoretic
sense ) the cong ruence relation speceq for tha t specification.

We can now characterize correct semantic interpretations.

ThEOREM Given an Intuitive data abstractio n A , its surrogate
semantic interpretation A and a specification S with the same

signature , A i~ correctly specified by S if and only if A ’

satisf ies S

PROOF — First , we show tha t satisfying S im plies correc tness.

Let w 1 • w be any instanc e of any ax iom of S formed by
consistently replac ing all var iables by constants of W c • The

equation “w 1 • w2 ” can be d.rtved by rule (4 )  of th. def in i t ion of

der ivations. So , w
1 and w .  are iqual in speceq • A ’

conta ins •peceq , so w 1 and V~ are equal in A ’ • Thus, every
axiom in S Is true in the interpretation A ’ . Therefore , A is

correctly specified by S

Now we show that correc tness Implies satisfaction of S
Suppose the contrary : A is correc t , but A ’ does not contain
speceq . Then , there exi sts an equality V 1 • w~ in speceq tha t

is not in the relation A ’ . Let E1,....E~ be the sequence of

equations in a derivation of — w 2  • Suppose an equation

V 1 
• v 1 I. constructed by rul e ( 1) .  Then the equality

• v1 ” is true In A ’ • because A ’ is a co ngruence relation and

admits .11 Identities of tha t form. Similarly , if L~ is

construc ted b~ any of the rules (2 ) ,  (3~ or (5) , then it is a

statement of equality tha t must be true in the c ongruenc e relation
A ’ . Suppo se E1 is construc ted by rule (4). Then . E~ is

form d ‘ v subst itut ing constants for variables in an ax iom of S
3ut , every ax iom is true in A ’ • because A Is correctly
sp ecif ied. In every cas e, E1 is a statement of equality tha t must

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  



- -~
- - - -

Ardis & Hamlet -- Struc ture of Specifications and Implementations 26

be tru. in A ’ . Ther e fore , the last equation , “v1 • w2”, must be

true In A ’ •

‘~ sn is an intui tive data abstraction correct ly specified? If the
seman t ic interpretation satisfies the specification, t hen all of the values
tha t the sp ecif icat ion asserts are equal must be equal in the intuitive

abstraction. However , there may be values tha t are equal intuitively, but are
not necessarily equal accord ing to the specification. Even though the
specification does not completely describe the abstraction , nothing in the
specification is contradicted. In this case we say that the sp ecification is

still correct.

Our acceptanc e of “incomplete” specifications as correct is motivated by

the ~~ of data abstractions. In practice , the use of an abstraction will

almos t never require every distinct value of each sort. Those values that are

never used might j us t as well be Identified with one value in eac h sort that
Is us,d.

A particularly p erverse cas e of correct Incomplete specification is the

us. of a data abstraction tha t does not distinguish between any value s in any
sorts. For example , an abstraction tha t includes input/ou tput operations may

be used in a program only to read and wr i te val ue s of that abstraction. Such
use is characterized by the trivial interpretation that equates all values of

eac h sort. Even the val ues “trus” and ‘false” of the •ort 8oolean are equated
in this Interpretation. Although the distinctions tha t the specification

makes between value , of this abstr action are not made by the use of the

abstraction . it would not be right to say tha t the specif icat ion is Incorrect.

With the help of the prev ious theorem we obtain a characteri zation of all

correct ly  speci f ied data abstract ions of a specification.

ThEOREM —— The collection of data abstractions that are correct ly

sp eci f ied by a sp ecification form a complete sublat t ice of 1..,, . We

denot. the sublattice

PROOF — 3, the previous theorem we may argue about correctly

specified abstractions In term s of the surrogate semantic

interpretations tha t satisfy the specification . Each semantic

Interpretation is a congruence relation on Wc • The congruenc e

_ _  -- - -~~~~- .  --- - - - - --~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _  - - , ~~~~- -—~~~~~~~~~ -~~~~~~~~~~~~ ---~~~ - - —

Ard i a & Hamlet —— Structure of Spec ificat ions and Implementations 27

relations that satisfy the spe c ificati on cuntain the congruence
relat ion speceg , by def in ition of satisfy . The elements of
are contained in L,,, because they are all congruence relat ion. on

• W0 , Therefore , the lattice operations of L 1, apply for
We need to show that the meet and join of every subset of

is contained in L, . The inters.ot ion of any nusber of sets
containing a cu un subset contains that subset. So , the meet of
any niaber of congruenc. relat ions containing speceg is a
congruence relat Ion co ntain ing ap.ceq . Similarly , the congruence
c losure union of any nusber of congruence relations containing
speceg 13 a congruence relat ion containing spec.q .

3.~~~. £x ple

PIg. 3.2 depI cts the lat t ice L, of the List data abstraction spec if ied

~n Pig. .I. The semantic Inter pretat ion speceq is represented by the box
a’ the button ~f the 1att~~e. Under this interpretat ion there are three
dist tnct  valuea ..~‘t t ype List: Eaptyt. , Makeltst (One) , and the value

Conc(Ma~celist~~ne) $akelist(One)) , wnich is equal to

Conc (Cunc (Makelist (~)ne~ )~skeltst (One~ ) ,Nakellst (One I) .u These last two
values arm equal because of axiom Li i . (Recal l our convention not to show the
s ing le value One’ cf sort Lit ~n any of the boxes.)



Ardis & Hamlet —— Structure of Specifications and Implementations 28

(A , B ,C. D)

(A )  F (B) (A.B)
(B,C,D) (A,C,D) (C,D)

(A)
(B)

(C , D)

A • Emp ty L
B • Makslist(One~C • Conc (P ~ak e i i s t ( O n . ) . P~ak ej i g t ( On . ))
D • Conc (Conc (MakeList(One ) .Ma kejimt (One )),Ma keijst (Ons))

F i g u r e  3.2 The iatt ice 
~~~~ 

for I.imt

I

~~~~~~~~~~~~~~~~~~ _~~~~~~~ • • ~~~~~~~~~~~~~ ~~~~~~~~~ • •  • •~~~ 
-



_____  - - • • ---- - -
~~

• - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- ‘ • • ---— —-——-—-

Ardis & Hamlet -— Struc t ure of Specifications and Implementations 29

The semantic interpretatio n represented by the bce containing
“ (A) , (8 ,C,D)” distinguishes between the empty list and all other lists , but

makes no other distinctions : all noaempty list s are the same. This

interpretation satisfies the specification , because all of the distinctions it

makes are made by speceq • But , some distinctions made by speceq are not

mad. by this interpretation. Specifically, speceq dist inguishes between

“Makellst (One)” and “Conc(M.k.list(One)).”

Unlik, the lattice L~ of this signature (Fig. 2.2) L 5 Is fInite. In

fac t , there are only five semantIc interpretation s in L, . Note that the se
f ive interpretat io ns appear in L,4 in the same relationship to one another as

they do in L, . Why is L, so muc h smaller than Lj,, ? The sp ecification of
the List data abstraction defines a very small spec.q interpretation. For

example , all words of the form :
Conc (Conc(...Conc (P~ kelist(One) ,Makel ist (One)), xt),x~~)...)

where the I t ar. either “Makelist(One)” or “E.ptyL” , are equal to the word :
Co~~(P~~kelist(One),~~ke1ist (One))

All words of th. form:

Conc (Conc(...Conc(Empt vL,EmptyL),...E.ptyk)

are equal to the wo rd “Emptvt” . Becaus e .pec eq collapses an infinIt, number

of constants from W~ into four equivalence classes , there are only four
th er Interpretations tha t can contain sp eceq

All the semantic int .rpre tattons of a data abstraction that sat is fy a
sp eci f icat ion are correct ly specified. However , all but speceq are

2.!IE’-sDectfied . That is , given one of these over—sp ecif ied interpretations ,
there exist. a specification S with semantic interpretation •p.ceq equal
to tha t interpretation. The lattice L,’ of S’ is smaller than the

original lattice L, . In the example , the semantic interpretation

tepresented by the bce containing “(A).(3,C.D)” satisfies a specification 5’

whose lat t ice L~ ’ contains jus t the two interpretation , labelled
‘ (A) ,(l ,C ,D)” and “ (A ,3,C ,D). ” The semantic interpretation represented by the
box containing “(A), (B),(C,D)” is ander anecif ied by S’ • because it is not

in the latt ice t.~ . Under—specified data abstractions are incorrectly
specified. To reiterate , a data abstraction is over—specified by a

specificat ion if it is in the lattice L, of the specificatIon but is not the

semantic Interpretation speceq of that specification. A data abstraction is

- . • • ~~~~~~~~~~~~ ____ • — —-— - -— — — • --- ---- ---- • - ~~~

Ardis & Hamlet -— Structur. of Specifications and Implementations 30

under—sp ecified if it is not contained in th. lattice L5 of tha t
specification.

3. 5. islatio nship to Ot her Work

The Idea of using a lattice to captur e the struc ture of semantic
interpretations of algebraic sp ecification of data abstractions is not new.
Ciarrata na et ci. 76J and (Polaj nar 78 1 desc r ibe similar latt ices , but with
much more attention to mathematica l details. A differ enc. between L~ and

the ir lattices is the presence of different int.rpretations of sorts other

than the sort—of—interest in L, . Consequently, t.~ is much bigger,

con ta ining such degenerate interpretations as the trivial interpretation,
which equa t es all values to one another in eac h sort.

-_-


~~~~~~ --•~~~~~~~~-~~~~~~~~~~~- - - • ~~~~ • • • -  — -~~~~~~ • • • - - ----- ~~-- -—~~~—-

Ardi. & Hamlet —— Structure of Specifications and Implementations 31

4. Implementation

The Pascal—Ilk. pragr lng Language indicated in Section 1. 1 allows us
to write £.~~U def in itions containing certa in typed objects (is the
progra ing—language sense) 

• and with procedures using these types as

• parameters and results. The language syntax can the refore be matched to the
sy ntax of a signature In the obvious way.

DEFINITION — A c lass definition involving a collection of types
T , and procedures P typed fro. T and using T parameters , I.

said to imale.ent a sIgnature (5 , F) if and only if a
correspondenc. can be established between the names in S and P
and the intuitive objects tha t are the m.an ings of the types and
procedures in T and P • The correspo nden ce must be consi stent in
assigning procedures with typed parameters to fuection names with
correspond ing sort d omain s , etc . The sort—of—i nterest mus t
correspo nd to the type with the cl ass name.

As defined , a given c lass impl ements a natur al signa t ur, whose n~~~s are
taken from the progra ing—1anguage syntax itself. Any given signature has
many impl .ntations, corresponding to the arbitrar y content of the
progra ing— language pro cedures , and to the arbitrary content of the record
that represent . the sort—of— interest . For ex ample , the c lass in Fig. 4.1
imp lements the same signatur . sp ecified by the axioms of Fig. 3. 1.

I

1
— — •~~~ — - - - —



_ _  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Ardis & Hamlet —— Structure of Specifications and Implementations 32

cl ass List

reço~d
9alues : a l..Listsize j of Elt;
Lists tar •

;

Ll~~ 
Emptyk: List ;

5tesult : List ;

~~IILlt.Listlen$th :• 1;
*ss ul t .L iststa rt :~ 0
R.sult. Va lues (0) :•
£mptyL :• Result;

~~~~ 
Conc (First , Second: List): List ;

var
Tesult: List ;
Pos: £uL;

begin
I! tIstEqual (First , ~~pty L)

th~~ Conc :• Second
~~~~ j f ListEqual (Second , EaptyL)

:• First ;
Res • iststart .• 0,
Rasu lt .Lis t length :• 0;
Pos :• First.Llststart;
!j~~! 

Re sul t. Listle ngth PIrst.Listlength j~
~ f~~ult .Va lue i (Result .Listlengthl : Fi rst.V a lus s (P05) ;

Pos :• Next (Pos ) ;
Rasult.Ltstlet4th :• Resu.lt.ListLength + I;

poY~~. Second.Liststart;while lesu .lt .L ist let*gth C (First.Li.tlength +
Second.Ltstlength) and

Result.Listlength < 3 ~g

~~*~iialt.Values (Result.Listlengthl :• Seco nd .Values (Pos i ;
Po. : Next (P0.):
*.sult.Listlength :• Result. Listl ength + 1;

Co~?~~
. Result;

Head (L : List): Elt;

~‘ff ~~.ust length • 0
eh Head :• One

~~~~ Head : L.Values (t. Llststartj ;

Figure 4. 1 Implementation of List data abstraction

___________________ _ _ _ _ _ _ _ _ _ _ _
~~~~~ ~~~~~~~~~~~ --~~~~~~~~~~ -_ _ _



_ _ _ _ _ _ _ _ _ _ _ _  
- - -~~•~~~~------- • -

r

Ardis & Hamlet —— Structure of Specifications and Lspl..entations 33

Tail CL: List): List ; • -

2*esuIt : List ;
Pos: jg~;

t :. £mptyL~Pos :• Nex t fl ..LLs t s t art ) ;
!h44!. Result .List lefl lth < (L.List iength — 1) 42

: Conc (Resul t ,
Makelist CL. Values (PosJ)) ;

Pos :~ Next (Pos);
Taff ~

’. Result;

~~kelist (N: Elt): List ;
5*esult: List ;

:• EaptyL
Maka list :~ Result;

$ext (Pos : j~~): jj~;
_.xff npos • Listsize —

p han Next :• 0
~~~~ Next :• Pos + 1;

L1~ps ListEqual (First . Second: List) :
~~~j ;

~~ff~Firs t .List length • I ~~S.cond.Listlength • T
~~~~ 

jj Pirst.Li.tlength •
Second.Listlength

~~~~ List Eq ual :. c_t~i~~~~ 
List Equa l :• a e

5j~~j~. Head (First )  • cad (Second ) and
ListEq ual (Tail (First ) —

Tail (S.~0~dc )
.th!n ListEqual
iTS~ List Equal :• • •e;

f One: Lit;

:• I;

~~4 class

Figur e 4 .1  (cont.) Implementat ion of List

-~~~~~~~~~~ - . •



~~~~~~~~~~ - --.~~~~~~~ • - • -  ~~~
- - -—

~~~~~~~~~~~~~~~
- • - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Ardis & Hamlet -— Structure of Specifications and Implementations 3~~

In the syn tactic correspo ndenc e between a signature and c lass cod e , part
of the information of the program goes unused: the details of the record type
corresponding to the sort—of—interest . The class name is made to correspo nd
to this dlstingbi.hed sort , but the record components may be anything. Thus
to assign a meaning ar ising from the code, the correspondance between the

cross—prod uc t Language—meaning of this record and the sort—of—interest must be
given. This correspondence is of course arbitrary, since onl y it. domain (the

cross—product record set ) appears in the prog ram. Thus al though the program
meaning is unique, defined by the semantics of the prog ramming language as
extended In Section 1. 1, the abstraction defined is not unique , since each

different represen tation mapping with the proper domain y ields a new meaning.

.. 1. Correc tness

The si.plified discussion in Section 1.1 presumes tha t when a base type
of the pro$r thg language appears in the signatur e, the Intuitive set of
this sort , and the meaning set from the language , are identical. In tha t ease
nothing ilk, a r epr esentat ion mapp ing (othe r than the Identity ) I. needed for
base types to define implementation diagrams and correctness. This simple
view doss not correspo nd very well with reality, and does not extend to
hierarchical definition of abstractions . When we use (say ) j1g~ 

in

implementIng some abstraction , it is seldo, true that vs are  really using the
full set of integers —— sor. likely some sp ecial subset Is really involved.
(Fo r example, when the jj~ quantities are servi ng as array sub script s, the

actual meaning set is probably limited to the legal boumds.) And, when one
previously defined type ii employed in the definition of another , which of the

many possible representations of the ear l ier typ e rec or d is intended? Nothing
in the syntax can say. For these rea sons we are forced to define correc tness
of an implementation in terms of a col lection of representation functions,
carrying each one of the meani ng sets from the language onto an Intuitive set.

At each level, only the sort—of—interest app ears as an explicit tup le of
val iss ; the other sets have their representations, however.

DEFINITION —— Given a £~
ggg defin ition and an intuitive data

abstraction whose signature the c lass Implements , and representation

functions mapping the meaning s of the 
~~

ggg types to the sorts , each

procedure of the ~~ggj has an lenlementation ~ g~~m, as follow.:

a

a..  - - -- - — - . —- -



rr - - - . — -
~~ 

-

Ardis & Hamlet —— Structure of Specifications and Implementations 35

Let p be a proc edur. of the Implementation corresponding to

function name f :  A 1 x ... a Ak —)  A ; of the signature, A t the

sort—of— interest. (Other cases are similar , mutatis mita ndis. ) Let

the meaning of the ~~~ record be the set D1 x ... a D.,~ , and let

C1 be the meaning set of the Implementation corresp onding to
for i~~~ L .  Let L1: Ct— — A1 except that
R 1: D1 x ... a Dn ——— > A 1 . The implementation d iagram for ~ ‘

is:

f
A 1 a ... * A,~ ————— ) A 1

x • ..  x Ck 1—) D 1 x ... x

The upper part of the d iagra m describes the intuitive abstraction ,

while th. lowe r part describes the meaning of the implementation.
lie say tha t the implementation is corre c t if and only if all of the

implementation d iagrams commute.

An Implementation abstraction can fail to be correct for an intuitive
abstraction only through the semantics of functions and representations.
Syntactically there can be no failure to correspond because the abstractions

share the same signature. A semantic error in a function is straightforward:
the intuitive function is simply not (p1 , for the proc edure p to which it
correspo nds. However , it Is easy to lose sight of the fact that thi s
statemen t rel ies on a representation function to bring the intuitive and
Implemented domain/range into l ine. The correctness of (p3 never appear s in
Isolation, only in composItion wi th the necessa ry representation c onversions.
There is . however, a case in which (p3 seems to stand on its own : when the
representation functions are alt identities. If every Intuitive and

Implemented object I. the same , then th. only errors can be in the code
w ritten to manipulate these obj ects. Thi, sp ecial case probably looms larger
in our m inds when we think abou t imp lementations than it ought to: one of the
virtue s of implementation is that non—identity representations are convenie nt ,

and safely hidden in the encapsulated type definition.



. --—--- -_- ., - - _ -

Ardts & Hamlet —— Structure of Sp.oiflcatlona and Implementations 36

4.2. Semantic Interpretation

Just as a sp ecification defin es a class of semantic interpretations tha t

satisfy the specification , an implementation defines a class of semantic

interpretations that satisfy the implementation. In fact, most of the

statements we made about sp ecific ations in the previous section can be made

about Implementations. This is not hard to explain. SpecifIcatIons and

Implementations are both descriptions of the same objec t, an

intuitively-understood data abstraction.

The first step In describing semantic interpretations tha t satisfy an

impl entation is to define the concept of a derivation for implementations.

Rule (4 )  for forming equations in a der ivation (section 3.2)  uses an axiom to

generate an equation. There are no ax ioms in an implementation, so this rule
can not be used. However, the cod e for functions that appear in a constan t

~~n be execut ed, and the resul t can be checked to see if it is the same as
other execution results.

DEFINITION —— The g~gj~ function is a mapping from (J~ to the
intutitive progra ing—langua~e meaning sets , usi ng the meaning of

the functions appearing in the constant:

eval(f (v ;,...,v~ ) )  (~ 1 ( (w 13 , . . . , (w~ J

Je can now construc t a new rule for derivations :

(4 ’) If eval(v1 ) • eval (w 2 ) then V 1 
• w2 is an equation.

This gives us the following definition:

DEFINI TION —— A derivation’ Is a der ivation (section 3.2) with rule
(4’ ) substituted for rule (4) . The last equation Is said to be

~~~~~~~~~~~~~ 
Two constants w 1 and w 2 ~ W~ are equal in cpnce~ if

and only if the equation v 1 • w 2 can be derived ’ .

Conceq p lays the role for implementations that speceq plays for

specifications. Any semantic in terpretation that satisfies an Implementation
must equate : identical value., val ues that are equal because the implementing
code of both value , has the same meaning, and values tha t are equal because of
substitut ion of equal values for the same part of equal values. To be a valid

- —~~ .-— w~~~— ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ -.~~~~~~ -

Ardis & Hamlet —— Structure of Specifications and Implementations 37

semantic interpretation it must be a congruence relation on

LE!Q~A —— Conceq is a cong ruence relation on W~

PROOF — The proof tha t speceq is a congruence relation (section
3.2) does not use rule (4) of derivation. The other rules for

forming equations in a derivation’ are the same as for a derivation.
Thus, the proof that conceq is a congruence relation is Identical

to the proo f that speceq is a congruence relation.

The semantic interpretation conc.q is correctly implemented.

LEI*4A —— Given an implementation I , its semantic interpretation
c onceq is correctly implemented by I

PROOF —— First we show that conceq defines a mapping R1 that
serves as a representation mapping of I onto concala , the

quotien t algebra defined by conc.q • Let (T 1,...,T~) be a tuple
of concrete types that represent the type S • Define R1 on the

restricted set of tup les that represent constants in W~ by:

eval (v) — (c 1,...,c~) implies
: (cL,... , c n) I——’ lv i

for some constant v 6 W~ of type S and constants

CI,••• ,Cn of the types T 1,..., T~ . The notation “lvi”
stand s for the equivalenc e class of v in concalg . We also

require :

R 1(x) • R 1(y) if and only if
.val (w 1) — eval(v 2)

for some words v 1 and v 2 . R1 is well—defined, bec aus e

1w 1 ! • fy i ! in concalg whenever sval (v 1) — eval (w2) in

I . For tuples (d1,...,d~) that do not repre se nt any

constan t in W~ , the valu, of R1 may be undefined . These
tuples will never occur in pract ice , and are not significant to

the correc tness of
Next, we show that I correctly implements concaig

under the mapping R1 . There exists an imp lementation
diagram :

I

~~~~~~~~~~~~~~ . - .~~~—



- — --- — . _  -•

~trdls & Hamlet —— Struc ture of Specifications and I.plementations 38

f
S — — ——— — > S

(f i
x ... x Ta——— > T 1 a ... x

for eac h function f in I • Let w be a constant of type

S in W~ , with representation (c 1,... ,c~ in I . By

def inition of

eva l ( f (w ) ) • (C; ’,...,c~~’)  implies
(c 1 • ....,c~ ’ ) I ’  lf (v) I

So, the diagram commutes.

3. Structur. of Semantic Interpretations

Sinc e the semantic interpretation conceq was defined similarly to
.peceq , it is no surprise that the relationship of an interpretation

satisfying an implementation i. the sane as the relationship of an

tnt.rpr Dtatton satisfying a specification.

DEFINITION —— A semantic interpretation is said to satisfy an

Implementation If it conta ins (In the set—theoretic sense) the
congruence relation conc.q of that implementation.

We i-an now describe correctness in algebraic terms.

ThEOREM —— Given ~n intuitive data abs t rac t i on  A , it. surrogate

semant ic tnterpr . ~n A and an implementation I vith t”e same

i tR~ ature;  A is - •ct lv implemented by I if and onl y if A ’

satisfies conceq of I

PROC’F —— First , we show tha t satisfyi ng conceq implies

~nr rectn ess. B’, the prev ious l emma R 1 is a representation x~ap~ing

~~~~ ensur es that c oncsq Is correctly Implemented by I • Define

any representation mapping
~A

to be the same as R 1 , except that

it maps onto equi valenc e classes of A instead of c onceq • Every
equival ence class ‘f conceq is contained in an equivalence class

f A • Sr . every d iiigram tha t comm utes for R1 commutes for

—- ----- —_—— _ - _ - _ - __- _ -----__-- —~~~- -—,--‘_- ---_ _ -_
~~~~~——~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-~ 
-

~ - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~

Ardis & Hamlet —— Structure of Specifications and Implementations 39

RA
Next , we show tha t correctness imp lies satisfaction of I

There ex i st s a representation sapping R ’ for which every

implementation diagram Comm utes. Let w 1 — w 2 be an equality In

conceq • Let (c1,...,c~) represent w1 and

represent v2 . Since conc eq is correct , 1 w 11 — 1w 2 !. This
means that eval (w 1) • eval(w2) . Correc tness of A under R ’

impl ies tha t

R’ Cc1 •C~~~~) R ‘ (d 1 • • . ~
,d~

)

So , v 1 • w~ in A ’ . Therefore, every equality in c onc eq is in

A ’ .

When is an Intuitive data abstraction corr ectly implemented? Just as

with specifications , one knows that an Implemen tation co rrectly implements a
col lection of data abst ractions. If the intuitive abstraction has a

surrogate semantic interpretation that satisfies the implementation , then the

Intuitive abstraction is correctly implemented.

The user ~‘f a data abstraction saY not requir, tha t the implementation

make as man~ distinctions between val ue s as i t does. n such cases the

Implementation is still correc t as long as the appropriate representation

mapping is used . That Is , the results computed by the implementation mus t be
Interpreted by a representation mapping that map. onto the surrogate semantic

interpr etation of the intuiti ve data abstraction .

For .x ple . a data *bstr.ctton that requires f ive distinc t value s of a

sort might be correctly tmpl.m.nt.d by an implementation that can produce ten

distinct values of tha t sort . However, th. ten values must be interpreted In
suc h a way tha t every operation on the interpreted val ue s behaves as the five

values would behave. The c omm utattv t ty of the imp lement~utio n dIagram capt ures

this idea prec isely. Note that there may not be any interpretation of the ten

values that behaves correctly. The existence of such an interpretation is

only guaranteed when the intuitive abstraction satisf ie. the sementic

interpretation c onc eq of the Implementation.

Am was the case with specification , we obtain a charac terization of all

correct ly implemented data abstractions.

-~~~~~~~~~~~~ -~~~~~~~

r ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~ - - -,~~~~~~~~~~--~.,—-.

Ardis & Hamlet -— Structure of Specifications and Implementatio ns ~O

THEOREM — The collection of data abstractions that are correctly

imp lemented by an implementa tion form a comp lete s ubl attice of

We denote the s ubl atti ce

PROOF —— This proo f is identical to the proof that L, is a

c omplete s ubtattice of L,., (section 3.3) , except tha t th. congruence

relations in L1 all contain co nceq Instead of speceq .

4 . -i. Ex ple

Fig. 4.2 depicts the lattice Li of the List data abstraction
implementation In Fig. 4.1. The semantic interpretation c onceq is
represented by the bon at the bottom of the lattice. Under this

Interpretation there are three distinc t values of t ype List :
“Conc~)’~k.list One) ,P~~keLi.t (One)),”

“Conc (Conc (Mskelist (OneY.M.k.list (One)), Mak.list (One)) , ” and “!aptyL,” which

is equal to “Msk.list (Ons). ” (The code for “6ptyL” does not creat e an empty

list, as its name Implies , but a list wi th one element in it.)

—- - “- —-~

- —- ----—--
~~~

..-_——---—--- - - ~—-—,~~ —~~~ ~~~~~~~~~~~~~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Ardia & Hamlet —— Structure of Specification s and ImplementatIons *1

(A , B , C. 0)

(A ,B) (C) (0)
(C ID) (A ,B , D) (A , B ,C)

~c)
(D~

~A ,B)

A - E~IIptyL
B • M a k e j I s I  (One)
C • Conc (Makeiist(One),MaKeil Bt(One))
0 - Conc(Conc(Make i is t (One) , Makei ist (One)) , Ma IIeiist(OflI’)

Figure 4 .2  The A a i~t ice for List



Ardis & Hamlet —— Structure of Specifications and Implementations ~2

The semantic interpretation represented by the box containing
“ (A B) ,(C ,D)” only disti ngui shes between two values of List , instead of thr ee.
It does not distingui sh between “Co nc(Nskel ist (One), Mekel ist (One)) ” and

“ Conc (Conc (Ms ksl ist (One), P~ ksli s t (One)), Hs ke list (One)). ” This Interpretation
satisfies conceq , because all of the distinctions it makes are made by
conceq

Just as I., is small, containing five semantic interpretations , L1 is

smal l, also containing five interpretatio ns. However , th. interpretation . in

4 are not all the same as those in • All words of the form:

Conc(. . .Conc(EmptyL,F.ptyL),...EmptyL )

are equal to

Conc(Conc(EmptyL, EmptyL),EsptyL)

in conceq . Furthermore , they are all equal to

Conc(Conc(PIskelist(One),P~ kel ist (One)),I~~kelist(One))

This is certainly not the case In speceq . Similarly,

Conc (EmptyL,~~kelist (One)
) end P~ kelist (One)

which are equal in speceq are not equal In conceq

Just as a data abstraction can be under—specified or over—specified, it

can be under—iamlemsnted or ~~g~~imm le.snted. Under- Implemented abst ractions
are not contained in the lattice L1 of the implementation. The
1mpl entation Is incorrec t , because it fa ils to distingui sh betwe en valuss
tha t can be disti nguished in the intu itive abstraction. An over— implemented
data abstraction is correctly implemented, but it Is not equal to the

interpretat ion conceq of that implementation. There exists an

implementation whose Interpretation conceq ’ is equal to the ov er— implemented
abstr action and whose lattice L1’ is smaller than the original Lattice

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- _ _ _ _ _ _

Ardis A Hamlet —— Structure of Specifications and Implementat ions ~4 3

5. Intersection of Implementation and Specification

Given a specification and an Intuitive data abstraction one can determine
whether the intuitive abstraction Is correctly specified by the specification:
tt is if the intuitive abstraction satisfies the specification; otherwise , it
in not . In the name way one can determine whether an implementation correctly
implements an intuitive data abstraction. Both of these determinations may be

lItficul ’ to sake , becau se the intuitive abstracti on one baa in mind is not
written down, Comparthg the specification to the implementation should be
.asisr. Each can be read and analyzed, In the process of comparison one
might see if the intuitive abstract ion satisfies either or both.

Our v iew is that specifications and Implementations describe collections
of data abstractions, These collections are described by lattices , I.5 for
specIf ications , L1 for implementations. We describe the relationship

between a specification and an implementation by the overlap of their
I. at ices

_______ — Given a specification S , Its lattice of correctly
specified data abstractions L.~ , an implementation , and its
lattice of correctly implemented data abstractions I.1 ; the
collection of data abstract ions that are correctly specified by S

and correctly Implemented by I form a complete sublattice of L.~
and I.1 . We denote the common sublattloe St

PBOOF —_ View ing the lattice s and L1 as sets , the
.nter.ect ion of L3 and s a set of Semantic interpretations
that satisfy both the specification and the implementation. Let
SI. conta in just those interpretations. SI. Is not empty , because
~. congruence relation that equates all elements of each sort

contains every congruence relation. This trivial Interpretatio n
satisfies every sceolfication and every Implementation with the same
signature.

The lattic e - perat tons , aeet and join , are the same for I.5
and • Thea. operations apply to every subset of SI. . !very
congruence relation in SI. contains the speoeq and oonoeq
relations defined by the specification and the implementation . So ,

F ~~~

Ardis A Hamlet —— Structure of Specifications and Implementations *~

the meet and join of any subset of SI.. are In St. •

Given a specification and an implementation of a data abstraction , the

existence of St. guarantees that there is at Least one semantic

Interpretation that sat isfies both specification and implementation. If the

Intuiti ve dat a abstraction one has in mind Is in SI. then the specification

and implementation are correct: they describe the desired abstraction. It the

intuitive data abstraction one has In mind is not in St. , then eithe r the

specification , the implementation or both are incor rect .

~~~~~~ 
Case Analysis of St.

The size of SI. relative to the sizes of L~ and Li sheds some light

on the relationship between the specification and the implementation of a data

abst raction. There are tour possibilities: I., eight be oompl.tely contained

in, but not equal to Li Li might be completely contained in , but not

equal tu L~ ; I., and L~ might be equal ; or 1 3 and 1.4 might not be

related by containment or equality.

When I., is completely contained in , but not equal to L~ , every

sema_ntlo interpretat ion that satisfies the specification sat isfis. the
iaplem.ntatlxi. The sublattice St. is equal to I.3 . If the Intuitive data

abstraction one has In mind satisfies the specification it must satisf y the

tmplementation. Every data abstraction that sat isfies the specification is

over— Implemented , because there is some implementation who se lattice I.~ ’ is

smaller than Li and contains the desired abstra ction . There are some data

abstractions that satisfy the implementation (they are in 4 ~ but do not
satisfy the specification (they are not in L~ ~~. These are under—specified .

If the intuitive abstract ion one has in sind Is one of these , the

scecifloat ion must be changed. Too many values are equ al in speoeq • This

might be corrected by removing or rewriting an uio . If the intuitive

abstraction is not In 4 then both the specification and the implementation

aust be changed.

—



-~~ - ‘~~~~~~~

Ardis A Hamlet -— Structure of Specifications and Implementations ~5

When L1 is completely contained in, but not equal to t.~ , every

semantic interpretat ion that satisfies the implementation satisfies the

specification, In this case SL — 4 • ~~e~’ data abstraction in St. is

over—specified. U the intuitive abstraction one has in mind is in St , both
specif ication and implementation are correct. Ti the intuitive abstraction is
in L~ but not 11 , then only the Implementation need s to be changed. Too
many val ues are equal In c onceq • This might be correc ted by adding more
tests in the code or by add ing concrete variables to the representation of
some type (s ) . The new variabLes would be used to d iscriminate be tween values
of tha t type. U the intuitive abstraction is not in L5 then both

specification and implementation must be changed.

When L5 and 4 are equal every semantic interpretation that satisfies
the specification satisfies the implementation, and v ice versa:
St. • L5 • 4 . The semantic int erpretation speceq is also the semantic

interpretatIon conceq ; it is neither over—specified nor over—implemented.
Every other interpretation In St. is both over-specified and

over— Implemented. U the Intuitive abstraction one has In mind satisfies
either the sp ecification or the i*pl entation then it satisfies the other.
If it doe s not sat is fy  one then it does not satisfy the other. This case is
unlik ely to occur often in practice , we feel , because the techeiqu .s of
specification and implementation are so different. Specification is more
algebra ic in flavor , and make s some distinctions easier (and so distinctions

harder ) to empress than in Implementations.

Finally, when 1~5 and Li are not equal or related by containment, some
semantic interpretations sat is fy  the specification and not the implementation,

some interpretation s sat isfy the implementation and not the specification.
Some interpretations , all those in SI. , sat isfy both, and are both
over—sp ecIf ied and over—implemented . The ex ample in Fig. 5. 1 shove this case

f or the List data abstraction, whose sp ecification and implementatio n uppear

in Fig s 3. 1 and 4. 1, resp ective ly. The semantic Interpretation sp eceq is

not in 4 . If this were one s intended abstraction the impl ementation would
need to be changed. Simi lar ly, the sp ecification would need to be changed if
the tnterp retaio n conceq were one s Intended abstraction .

_ _ _ _ _ _ _ _ _ _  _ _ _  ~~~~~~~~~~~~ - _ _ _



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _

Ardis A Hamlet —— Struc ture of Specifications and Implementations 46

~~~~~~~~~~~~~~~ ~~~~~~ •‘ . .

L5 (A .B .C .Dj~

(A) I I (B) (A ,B) (C)
[(D)

(B ,C, D) 1 1 (A ,C,D) (C I D) (A ,B.D)
- ~

(A .B,C) .

•
~~~

.

•

•
•
~

•

(A) I •

~ 

• :.. : (C)
(B)  I : ID) .

- (C ,D) (A B) 
.

~

.

A • Empty t.
B • Makelist(One)
C • Conc(Makeiist (One), Makel ist (One))
0 • Conc (Conc(Makelist(One),~~ake lis t (One)) , Makel1st(0n.))

Fiqure 5.1 Lattices L~ • L~ and St. for List

- - - - 1



~~~ 
.-- - - - - -

~~~~~~~~~~~~~~~~~~~~~
-
~~~~~~~

-—--———
~~~~~ 

~~

- --

~~~

— --- - _ :I~
-

~~TT~~

Ardis A Hamlet -- Struc t ure of Spec ifications and Implementations 47

5. 2. Maintenance Issue s

As we stated before , under—specification and under—implementation are

instances of Incorrect specification and implemen tation , resp ect ively. Some
values of the data abstraction that can be disti nguished intuitive ly are not
distinguished by the specification or implemen tation. Over—specification and

over-imp lementation are not incorrect. The smaller the sublactice SI. is,

the greater the prob ability is that the intuitive data abstraction has been
under—specified, under—implemented or both. On the other hand, the larger the
sublattice St is, the greater the probab ility is that the sp ecification and
implementation are correct.

In software maintenance one is often req uired to modify specifications

and implementations to reflec t new uses of the sof tii are . Robust software

survives many new applications with little or no required modification. For

data abstra c t Ions this quality of robustness is reflected In the size of the
sublattlce SI. • The larger the sublatt ice Is , th. more interpretations are
allove d. Sinc e short specifications (i.e., few axioms) tend to have large

lattices, over—specification is enc ouraged by robus tness and clarity. Smal l
Implementations (i.e., few concrete variables and few l ines of code), on the

other hand, tend to have smal l lattices : each distinction in values of the

abstraction “cost s” something , existenc e of a new variable or existenc e of a

new test. For this reason, over—Implementation may be discouraged .

It is our view tha t specifications and implementations reflec t the depth
of understand ing of their author. Two different interpretations of a
specificat ion or an Imple mentation may be equall y acceptable if their

differences are not important to (that is, not intended by) the author or the
user. In such c ases the best description of one s Intentions Is that
col lection of interpretations tha t are acceptable. The Lattice struc ture

provides a handy tool for describing such a collection, and for making further

discr imination s when they are needed.

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_
_ _ _ _

Ardis A Hamlet —— Structure of Specifications and Implementations 48

6. References

(ADJ 77)
J . A , Go.uen , J. W. Thatcher , 5. 0, Wagner and J. B. Wright

An initial algebra approach to the specification , correctness ,
and ~~p~ementation oF abstrac t data typ.s

IBM RC MB? April 1977

(Birichoff 67]
Garret t Birkhott
1.Att~~t Th.o~vA~~~Colloq. Pub.s v 25 (3rd ed.)

(Birkhott & Lipaon 70]
0, Birkhotf and J. Lipson
‘Heterogeneous Algebras
J~~CosbinatorIal Theory v. 8 pp. 1 15—133

(Dahl et *1. 70)
0. -J, Dahl 8. Myhrhaug and K. Nygaard

~~~~ ~~rwe~T~n ~~~~utt~~1~~ter , Oslo

(Gannon A Rosenberg 78)
J. D. Gannon and J. Rosenberg
Data abstract ion facili ties in SD4PL—D

Prog. ACM/NBS 17th Annual Tech. Syap. pp. 55—63

(Giarratana et *1 761
V . Glarrstana , t. 0 m ona and U • Montanan

Observability ouncepta in abstrsc t data type specifications’
Mat~ . Foun. Camp. Sd .  76 pp 576.587

(Grftzer 781
George Gnttzer
_______ Latt i.~~ Th.orv

c em c Pr,ss
197 ~

(Guttag 771
John V. Outtag
•Abstrsot data types and the development of data structuras
CACM v. 20 n. 6 pp. 396—404
June , 1977

(Hamlet 77)
Richard 0. Hamlet
‘Testin g programs with the aid of a compiler’
IE~~ TSE v SE— 3 pp 279—290

(Hamlet 78]
Richard G, Hamlet
‘Struc tured computabilIty’
L$—~ Dept . of Computer Science , Univ. of Maryland

(Hamlet St el. 791
H1 H let J. Gannon, 14. Ardis and P. MoNullin
‘Testi ng 4ta abstr ~ct Iofl. g ~Drou(h their implementations ’
Univ , g ~ ~o. Coep . ~ci. T R—To 1
May W19

L — _________________________________________________________________________ _~~___ ______ —- — - -  --- — —— ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~
-.-- — -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _

Ardis A Hamlet -— Structure of Specifications and Implementations 49

(Hoare 72]
C. A. Hoare
‘Proo of Correctness of ata Re re otatio ns’
Acts fnforuatioa v . I n. pp. 2~ l—fll1972

(Eleene 521
Stephen C. Kleen.
Lntrgduotioq j ,~ M.ta.ath.emt Ian
Van Nostrand
1952

(Linger , Mills & W itt 79)
H. C. Linger , Harlan Mills and B. I. Witt
3tj votur~~ ~r ra inm Theory ~~d Praatica
AddIson— esley
1979

(Llskov et al 77)
B. H. Liskov , A. Snyder , R. Atkinson and C, Sohaffert
‘Abstraction eohanlssa in CUJ’
CACM v . 20 n. 8 pp. 564—576
August , 1977

(Polajnar 78)
Jernei Polalnar
‘An algebraic view of protection and extendabilit y in abstract

data types’Ph. D. d iss. USC September 1978

(van Wijngaarden et al, 76)
van Wijngaarden Mailloux , Peck , Kost.r , Sint zot f , Lindsey ,

)4eertens and ?isker
~.4asd Rgnoj~t ~~ ~~t

A or4th.~~ L.ftalja f Ateol ~jSpringer Verlag , 19Th , Section 7.~
(Wul f London & Shaw 76)

WI l1~iam A • Wul t , Ralph I. . London and Mary Shaw
‘An Introduction to the construction and veri fication of

Alphard programs’
IEE E Trans. Soft Engin. v . 2 n, ~ pp. 253—26* , December , 1976

(ZIlles 75)
S. N. Zi llea
‘Algebraic specification of data types’
MIT CSG Memo 119 pp. 1— 12
July , 1975

I

~~~~~~~~-~~~~~~ - - - .~~~~~~~~~~~~~~~~~~~~~~~~ — -~~~~~~~~~ - -



~
-

~ - - -
~

- --
~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~-- - - - - —--- .- - -

~
---—

~~~
-

~~~
-

~~~~~
—

~~
-- — - -

~
—-

SIC u ~ s ‘v CL *Ss!VI ~ C~4~ii ~~ ~ i~cA-~ , L c i i . 4j
REPORT DOCUuENTAT~OH PAGE BEFORE COMPLETING FORM

I ~~~~~~~ s.u~~St ~~ - G0VY ACC (5$IOW ISO. ~ ~ t C u~~i C$V $ CATA LoG N~~MSI~~

~FOsa.rR. Y 9 -1J 54 1’ -_ _ _ _ _ _ _ _ _ _ _ _

4. YiT!.~ (sd J..A*uJ.)
I t y ~~(O~ atPO~~T 6 Pt ioo COVtNtO

ThE ~Ti~ucreHE OF ~PEClFICATl ON S & 1MPLEME NTATI ON~ In t e r i m
OF DATA ABSTRACT IONS 6 ~~~~~~~~~~~~ O~IG, $(Ø O ØT NU M S(~

TR—801’

T A UY$3~~~.~ S COsT~~*C? O~ G a *N Y si uM•t&.

Mark A. Ardis and Richard . Hamlet
AFO~R 77—3 181 —

• ~~~~~~~~~~~~~~~~~~~~~~~~~ *AM I AND aDO~~~U
$0 PU0GmAM CLIWttdt P~ OJrcT . ‘A Sk

£N(A 6 ~~~~ UNIt NOMSINS
univers i ty of Maryland - -

Department of Computer Science’
61lO2F 2304/A2

~oIlege Park, Maryland 20742 __________________________
‘I Co’,’ O~~~~~i.G O’c,CE ~~~~ aso a~ o~ tss 2 RI,o~~t Oats

A i r Yorc e O f f i c e ~V ~c ient iuic Research/?~ Septenther 1979
R~ ! ling AFB , ia~;h in~~~- n , tiC 2(;332 ‘I wu~ S(ø 0’ PA0CI

__ 51
‘4 ~~~~~~~~~~~ aot.. :~ .awt • aoo.t~s., jju.,~ ‘~~~~~ Coj.i..iIs,~ OlI.~~.i 1 ItCu SItv cL ass . (of ffi$. t.porl

UNC L A~ SI F I 1D
PS. OtC~~A ItFCatIOI~ ~~~es, G~~AO tls G

$C WE O u L t

5 ~~~ $Y ~~~i5~~~T$~~~~i 3’ * ‘ t W t N ~ .~f tAO. J~~po• I)

Approved ~ ; & l ~ re~ ia ~’~ 1~s r ib u t ~ ~n unuimit .-d.

~~~~OIS’~~~Su ’3’. S T A T I t N ’  of ,!~. ob~~
p
~e~ t ..., ... d Pt..-b ~O. 1 41ff . ... . , fr.. ~ R.p..rj

. ~~~~~~~~~~~~~~~~~~~~~~~ ‘~O~~!%

‘I - ~~~~~~~~~~~~ .. , ....,.. •t4. 0 ,,.e....p ,f I4.~~~It~ t~ •i.~.. 1 ..~~~ b $

~0 AS3 O~~. • 
~~~~~~~~~~ ••. .•• .~4. Of ~~~~~~~~~~~~~~ .4 O4~~.’~ fp ~, bS,,~ ...~~~a.f I

A b~a -iI :~~ rr~c ’ion in a Co ec ’ : - n f s r t~~ together wi ’h a collection of
fun-cfi~ n~~. An i n ’ tn ’l ve abntrac~~~n in unconnected with formalism : the setn
and func i ’rv are supposed to be known ab initto. Formal ideas enter when the
abstrnc - i n i~ (I) irpit’ r~v’n~ c~1, a conventional program written to carry out
the ~p.’r~ttjonn on acutal dat~s; and (ii) specified, a mathematical
character17~ ’ ion given to precisely d..ncribe its nets and functions. The
intu i’ ive ah~.traction . an imp l ementatir.n. and a specification share a syntax
that names the se t ” and functions , and gives the function domains and ranges

.%~~ IOU ’ ij,j
“1’ I~~~~*N 7)

~~~ UNC LASSIFIED
$EC~~RI’V C L S I I , V IC * ? I O * S  ol iw i$ 0*51 (51 f1 ~~~~ føt p~~~~

L — - - ~~~~~~ _ _~—



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—-

~~~~~~~~ ~
- ---~~-~~--- ——— - ~~~~~~~~~~~ —~~~ -~~~---- - — —--

SIC ~ MS VI CL *510. ‘CA ~ ~~~~~~~ ~~~~~~~
. .

~~ Abstrac t continued.

(as set names). The central question for any particular example of syntax is
wt tht~~ the semantics of th~ thre..~ ~t1ea;; correspons : does the co l lt~c ’ i~ n uf

objects and ;
~‘per:ttions ~t human being was thinking of behave in the way the

implementation ’s data and procedures br Lav~~? Do the mathematical tm ’ i ties
behave ~ s imagined? Tht~ questions can never be answered precisely, because
the intuitive abstraction is impreci e . On the other hand, preci:v coinpariso
of sped ~~~~ ~un and lrii~~ ,r~t~n’ a ion i:~ possible.

T h I : ;  ;‘~s ; . r  ~‘rt~s.~n’s an algebraic comparison of specif icati n:; wi th
implementations . I’ is shown that these abstractions ulway s over ap, and hay
a e~ rmon (lattice - ) structure that i:; valuable in understanding ‘ he
modi f icat ion ot code or specif icat ion. However , in dealing with the precise
en~~ t ies subject to formal analysis , ye must not lose sight of the intuition
behind ‘h. ’ . Therefore , our ~f i - -n~~~ax - e- framed :n terms of the intuit ive

a person emp ’ eJ - s pt c i fy  ;lr ~mpiement , and we re fe r  the
algebra ic ideas to this standard whenever possible.

~ect~~ n 1 presents the intuitive ideas ‘V an abstraction , its
i—p ~~e-n• at ion s ;3r ;i ~

-
~~c ficat Ion. The jr; .: are :-;~~en~ ial ly ) : o ~ of

(I-) - are 1.~ ) and (Guttag .
• 

• ~rc~ i n  ~~i v. :; the c -m.—~-n f~~:-ral ism be ~:;ed

the const rant work algebra. ifi ~~~ n;  3 tn t  4 , th is  i s app l i e d
“c l f i c at lo f l  and inp ren a~ ion. : r C ’l fl ~ .-xplores the overlap between the

that he p r t~ c~~:o- c~ -f lne -c~ I ri can shed l igh t n the
imprec ::. y r  :t real y V r. ’ : h. n tUi I V.~ .tt~~ t m c  i on in a
rs .r :: ri ’s mi n t.

UNCLASSIFIED
t I Cu U s ? v  C~~*%1,IsC*’ iO’. DI ‘~~u% U* ~~.ç f U1. .ø D~~~•5 . .~ .p.4,

~~~~~~ - - ~~~ -—~~~~~~~~~ - - -- -— --~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---~~~~ --


